
Intelligent System Monitoring on Large Clusters

Jimeng Sun Evan Hoke John D. Strunk Gregory R. Ganger Christos Faloutsos

Carnegie Mellon University

Abstract

Modern data centers have a large number of com-
ponents that must be monitored, including servers,
switches/routers, and environmental control sys-
tems. This paper describes InteMon, a proto-
type monitoring and mining system for data cen-
ters. It uses the SNMP protocol to monitor a
new data center at Carnegie Mellon. It stores the
monitoring data in a MySQL database, allowing
visualization of the time-series data using a JSP
web-based frontend interface for system admin-
istrators. What sets InteMon apart from other
cluster monitoring systems is its ability to auto-
matically analyze correlations in the monitoring
data in real time and alert administrators of po-
tential anomalies. It uses efficient, state of the
art stream mining methods to report broken cor-
relations among input streams. It also uses these
methods to intelligently compress historical data
and avoid the need for administrators to configure
threshold-based monitoring bands.

1 Introduction
The increasing size and density of computational clusters
and data centers pose many management challenges for
system administrators. Not only is the number of sys-
tems that they must configure, monitor, and tune increas-
ing, but the interactions between systems are growing as
well. System administrators must constantly monitor the
performance, availability, and reliability of their infrastruc-
ture to ensure they are providing appropriate levels of ser-
vice to their users.

Modern data centers are awash in monitoring data.
Nearly every application, host, and network device exports
statistics that could (and should) be monitored. Addition-
ally, many of the infrastructure components such as UPSes,
power distribution units, and computer room air condition-
ers (CRACs) provide data about the status of the computing
environment. Being able to monitor and respond to abnor-
mal conditions is critical for maintaining a high availability
installation.

Proceedings of the 3rd International Workshop on Data Man-
agement for Sensor Networks (DMSN’06), Seoul, South Korea,
2006

Administrators have long relied upon monitoring soft-
ware to analyze the current state of networks, hosts, and
applications. These software packages continue to evolve
and improve in their scalability as well as the breadth of de-
vices and conditions they monitor. Unfortunately, with the
scale of today’s systems, it is still very difficult to effec-
tively monitor an entire data center. Our target is the Data
Center Observatory, a data center environment under con-
struction at Carnegie Mellon designed to bring together au-
tomation research and real computation and storage needs.

Traditional monitoring software has three significant
weaknesses that make the capture and analysis of moni-
toring data difficult.
Configuration: Monitoring software requires significant
time and expertise to properly configure. For each data
stream that the administrator intends to monitor, he must
decide upon proper thresholds for the data values. That is,
he must define, for each data stream, what constitutes “nor-
mal” behavior. While classes of devices or instances of
applications may share a common set of these thresholds,
the administrator is still left with quite a challenge. All this
effort means the administrator is unlikely to take advantage
of much of the information available.
Reasoning: When troubleshooting problems within the
data center, simple monitoring of independent data streams
is not very helpful for tracking down problems. For ex-
ample, the administrator may receive an alert that an ap-
plication’s response time is too large, but the administrator
is still left with the difficult task of determining the root
cause.
Historical data: When troubleshooting, it is very useful
to know how a system has performed in the past. Cur-
rent monitoring software attempts to answer this by pro-
viding historical averages as a way of summarizing past
system behavior. While maintaining high resolution data
from thousands of data streams over a long period of time
is impractical in many situations, better techniques for sum-
marizing the data are necessary. An administrator needs to
not only know averages, but variations and extremes to ef-
ficiently troubleshoot problems.

Using stream-based data mining, InteMon is designed
to address these weaknesses of current monitoring soft-
ware. InteMon uses the SPIRIT [17] stream mining
algorithm to analyze the many data streams available in
modern data centers.

InteMon is designed to be a monitoring application for



large-scale clusters and data centers. It will complement
existing solutions by providing automatic mining as well
as efficient storage for the many data streams common in
today’s clusters. In particular, it can observe the correla-
tions across data streams, summarizing them in a succinct
manner; it can pick up anomalous behaviors that manifest
as broken correlations; it can summarize historical data as
compact “hidden variables” that can be used to approxi-
mately reconstruct the historical data when needed.

InteMon seeks to decrease the burden of system mon-
itoring in several ways. First, it decreases the level of ex-
pertise necessary to configure the monitoring system. It
accomplishes this by removing the need for the administra-
tor to set “alert” thresholds for the incoming data. Through
stream mining techniques, it learns correlations in the data
stream and can flag deviations.

Second, instead of just examining each data stream in
isolation, InteMon looks for correlations across data
streams. An alert is generated when the SPIRIT algo-
rithm detects a change in the level of correlation across
data streams. The existence (or disappearance) of these
correlations provides the system administrator with a start-
ing point for troubleshooting activities.

Third, by performing a variant of incremental principal
component analysis, SPIRIT [17] is able to incrementally
and compactly express the correlations and variations of
the data across streams as well as detect abnormal behavior.
This allows historical data to be intelligently summarized,
preserving cross-stream correlation and flagging regions of
interest that should be preserved in high detail for future
reference. The techniques and benefits of InteMon are
complementary to those provided by existing monitoring
infrastructures, improving the types of (mis-)behaviors that
can be flagged and improving the detail with which histor-
ical data is preserved.

Our prototype system allows these techniques to be eval-
uated in a real environment. It provides a web-based in-
terface to allow a system administrator to view anomalies
detected in the monitored data streams. It is currently mon-
itoring a subset of the infrastructure in Carnegie Mellon’s
Data Center Observatory.

The rest of the paper is organized as follows: Section 2
gives a brief literature survey; Section 3 discusses the key
ideas behind InteMon; Section 4 presents the architec-
ture of our system; Section 5 illustrates the stream mining
algorithm; Section 6 discusses some early experiences with
the system as well as future work; Section 7 concludes.

2 Related work
There are a number of research and commercial monitor-
ing systems, mainly focusing on system architecture is-
sues such as scalability and reliability. Ganglia [18] is
a hierarchical monitoring system that uses a multicast-
based listen/announce protocol to monitor nodes within
clusters, and it uses a tree structure to aggregate the in-
formation of multiple clusters. SuperMon [19] is another
hierarchical monitoring system which uses a custom ker-

nel module running on each cluster node. ParMon [5] is
a client/server monitoring system similar to ours but with-
out mining capabilities. There exist commercial monitor-
ing suites, such as OpenView [13], Tivoli [14], and Big
Brother [4], as well as several open-source alternatives, in-
cluding Nagios [16]. These systems are primarily driven
by threshold-based checks. As long as the result of a query
lies within a predefined range, the service is considered to
be operating normally.

There is a lot of work on querying stream data, which
includes Aurora [1], Stream [15], Telegraph [8] and Giga-
scope [9]. The common hypothesis is that (i) massive data
streams come into the system at a very fast rate, and (ii)
near real-time monitoring and analysis of incoming data
streams is required. The new challenges have made re-
searchers re-think many parts of traditional DBMS design
in the streaming context, especially on query processing us-
ing correlated attributes [11], scheduling [3, 6], load shed-
ding [10, 20] and memory requirements [2].

Here, we focus on the SPIRIT algorithm [17], which
performs PCA in a streaming fashion, discovering the hid-
den variables among the given n input streams and auto-
matically determining when more or fewer hidden vari-
ables are needed.

3 Main Idea
In this section, we present the main idea behind InteMon.
In a nutshell, it tries to spot correlations and redundancies.
For example, if the load on disk1, disk2, . . . disk5 moves in
unison (perhaps they are part of the same RAID volume),
we want InteMon to spot this correlation, report it the
first time it happens, and report it again when this correla-
tion breaks (e.g., because disk2 starts malfunctioning).

The key insight is the concept of hidden variables: when
all five units work in sync, they report five loads, but in
reality all five numbers are repetitions of the same value,
which we refer to as a “hidden variable.” Correlations can
also be more complicated (e.g., for a specific application,
the disk load is a fraction of the CPU load). There can even
be anti-correlations.

This viewpoint simplifies all three problems we men-
tioned in the introduction. Tracking a few, well chosen hid-
den variables allows for automatic configuration, anomaly
detection, and compression:
Configuration: the human user does not need to know the
normal behavior of a data stream: InteMon will learn it
on the fly, and it will complain if there are deviations from
it.
Reasoning: InteMon will report the timestamp and the
numerical weights of the input data streams that caused the
change in correlation. This provides the administrator with
an ordered list of data streams that were involved in the
anomaly, allowing him to focus on the most likely culprit.
Historical data: We can save a significant amount of space
when storing historical data. First, there are fewer hidden
variables than raw data streams, but there is still enough in-
formation to approximately reconstruct the history, because



Name Description
ifInOctets.2 Bytes Received
ifInUcastPkts.2 Unicast Packets Received
ifOutOctets.2 Bytes Sent
ifOutUcastPkts.2 Unicast Packets Sent
ssCpuRawUser.0 Unprivileged CPU Utilization
ssCpuRawSystem.0 Privileged CPU Utilization
ssCpuRawNice.0 Other CPU Utilization
ssCpuRawIdle.0 CPU Idle Time
memAvailReal.0 Available Memory
hrSystemNumUsers.0 Number of Users
hrSystemProcesses.0 Number of Processes
hrStorageUsed.1 Disk Usage

Table 1: Example SNMP metrics used by InteMon

there are redundancies and correlations. Second, since we
know which timestamps were anomalous, we can store
them with full information, compressing the rest of normal,
“boring” data. This is analogous to compression for video
surveillance cameras: during the vast majority of the time,
things are normal, successive frames are near-identical, and
thus they can be easily and safely compressed; we only
need to store the snapshots of a few “normal” timestamps,
as well as the snapshots of all the “anomalous” ones.

Next, we present the details of our implementation: the
software architecture of our system and the user interface.
In Section 5, we also present the mathematical technique to
achieve on-line, continuous monitoring of the hidden vari-
ables.

4 System Architecture
In this section, we present our system design in detail. Sec-
tion 4.1 introduces the real-time data collection process for
monitoring sensor metrics in a production data center. Sec-
tion 4.2 presents the database schemas for data storage.
Then Section 4.3 shows the functionalities of the web in-
terface.

4.1 Monitoring sensor metrics

Monitoring is done via the Simple Network Management
Protocol (SNMP) [7]. SNMP was chosen because it is a
widely used protocol for managing devices remotely, such
as routers, hosts, room temperature sensors, etc. The large
number of devices that support SNMP made it a natural
place to start for data collection. However, any protocol
that allows time-series data to be obtained could be used
with InteMon.

Data collection is done through a daemon process run-
ning on a designated server. This server is configured to
query a designated set of sensor metrics (see Table 1) from
all hosts in the data center using SNMP. At specific in-
tervals, typically a minute, the server will query, via the
snmpget program, each of the hosts and store the result
in a customized MySQL database. Individual queries are
spread out uniformly in the entire period to reduce the con-
current server load, and the load on clients is negligible.

Table Fields
MACHINE id, type, name, address
SIGNAL TYPE id, properties, name, oid
STREAM id, machine, signal type
SPIRIT INSTANCE id, name, normalize function
NORMALIZE FUNCTION id, name, function
INSTANCE MEMBER stream id, spirit id
RAW DATA stream id, time, value
HIDDEN hidden id, spirit id, time, value
RECONSTRUCT stream id, spirit id, time, value
ALERT spirit id, time, alert id, properties
ALERT WEIGHT alert id, stream id, weight

Table 2: Database tables used by InteMon

The streaming algorithms are then run across the incoming
data to detect any abnormalities.

4.2 Database backend

In order to facilitate easily grabbing data via SNMP, the
MACHINE table contains the host names of all the ma-
chines to be monitored, and the SIGNAL TYPE table con-
tains the OIDs of all the signals to be monitored. When
the daemon runs, it performs a lookup in the STREAM
table for all the streams that belong to each machine
and queries the current value of each OID, via SNMP.
The returned values are then stored in the RAW DATA
table, keyed by their stream id and time. Because the
STREAM table maps OIDs to machines, we have com-
plete flexibility over which signals are monitored on each
machine. SPIRIT INSTANCE allows complete flexibility
over which signals are grouped together for analysis. An
entry in this table exists for each distinct set of streams
that are analyzed together with a given normalization func-
tion that points to entries in a NORMALIZE FUNCTION
table. A NORMALIZE FUNCTION entry is a function
applied to the data before it is analyzed for correlations.
There is also an INSTANCE MEMBER table that maps
each signal to the SPIRIT INSTANCEs to which they be-
long. For example, to analyze correlations in network ac-
tivity, a SPIRIT INSTANCE could be created with all the
network activity streams as members.

The data is then analyzed for correlations and the re-
sulting hidden variables found are stored in the HIDDEN
table, keyed by the SPIRIT INSTANCE to which they be-
long, as well as the time. A change in the number of hid-
den variables indicates something anomalous is happening,
causing the current correlations to break down. This trig-
gers an alert which is stored into the ALERT table. The
alert id keys into the ALERT WEIGHT table, which con-
tains the relative weights of the signals that contribute to the
new hidden variable. This provides an indication of what
caused the correlation to break down, and it is useful for
diagnosing the source of the problem. As a sanity check of
the hidden variables, the original data is reconstructed from
the hidden variables and stored in the RECONSTRUCT ta-
ble.



4.3 Web interface

The JSP-based web interface is currently running on
Apache Tomcat 5.5.15 with JRE 1.5.0. It consists of a main
page with links to monitoring pages for each type of signal
and each host. Also, this page lists the most recent alerts
and the hosts/signals they affect as well as a link to a more
extensive page of abnormalities. This provides the system
administrator with the pertinent information that needs to
be addressed immediately as well as tools to investigate
further.

The individual monitoring pages consist of three graphs,
shown in Figure 1. These graphs are generated with the
JFreeChart library version 1.0.1. Current graphs are cached
for improved performance, while graphs of older data are
generated on the fly. For the signal monitoring pages, the
first graph contains a minute-by-minute plot of all the sig-
nals of a given type, across hosts.

The second graph contains the hidden variables. For ex-
ample, if all machines show the same pattern of CPU uti-
lization, (e.g., a daily cycle), we have only one hidden vari-
able, which is exactly a sinusoid-like wave with 24 hour pe-
riod; now if half of the machines get overloaded to a 90%
utilization, we need a second hidden variable, constant at
90%, to capture the fact. The system not only flags the
abnormal timestamp, but also identifies the cause from as-
sociation weights to the new hidden variable. In this case,
CPU utilization has the largest association weight to the
second hidden variable.

The last graph gives the reconstructed data. This graph
uses only the hidden variables to try to approximate the
original data, giving the user a feel for how well the algo-
rithm is working. The host monitoring pages are similar,
except they provide graphs of all signals monitored on a
specific host. On each graph, vertical bars are drawn at
the locations where abnormalities occur (i.e., the number
of hidden variables changes). These pages provide naviga-
tion to other monitoring pages via pull down menus as well
as links to move forward and backward in time.

5 Stream mining
In this section, we describe the underlying mining algo-
rithm in more detail. We follow standard matrix algebra
notation for the symbols: Bold capital letters are matrices
(e.g., U); the transpose of a matrix is denoted with a T
super-script (e.g., UT ); bold lower case letters represent
vectors (e.g., x); normal lower case letters are scalars (e.g.,
n, k).

5.1 Correlation Detection

Given a collection of n streams, we want to do the follow-
ing:

• Adapt the number of k main trends (hidden variables)
to summarize the n streams.

• Adapt the projection matrix, U, which determines the

participation weights of each stream on a hidden vari-
able.

More formally, the collection of streams is X ∈ RT×n

where 1) every row is a n-dimensional vector containing
values at a certain timestamp and 2) T is increasing and
unbounded over time; the algorithm finds X = YUT in-
crementally where the hidden variable Y ∈ RT×k and the
projection matrix U ∈ Rn×k. In a sensor example, at ev-
ery time tick there are n measurements from temperature
sensors in the data center. These n measurements (one row
in matrix X) map to k hidden variables (one row in matrix
Y) through the projection matrix U. An additional compli-
cation is that U is changing over time based on the recent
values from X.
Tracking a projection matrix: Many correlation detec-
tion methods are available in the literature, but most require
O(n2) comparisons where n is the number sensor metrics
every time tick. This is clearly too expensive for this en-
vironment. We use the SPIRIT [17] algorithm to monitor
the multiple time series. It only requires O(nk) where n is
the number of sensor metrics and k is the number of hidden
variables.

The idea behind the tracking algorithm is to continu-
ously track the changes of projection matrices using the re-
cursive least-square technique for sequentially estimating
the principal components. To accomplish this, the tracking
algorithm reads in a new vector x and performs three steps:

1. Compute the projection y by projecting x onto U;

2. Estimate the reconstruction error (e) and the energy
(the sum of squares of all the past values), based on
the y values; and

3. Update the estimates of U.

Intuitively, the goal is to adaptively update U quickly
based on the new values. The larger the error e, the more U
is updated. However, the magnitude of this update should
also take into account the past data currently “captured” by
U. For this reason, the update is inversely proportional to
the current energy (the sum of squares of all the previous
values).
Detecting the number of hidden variables k: We use en-
ergy thresholding [12] to determine the number of hidden
variables k. The idea is to increase or decrease the number
of hidden variables when the ratio between the energy kept
by the hidden variables and the one kept by the input values
is below or above a certain threshold (e.g., 0.95 and 0.98 in
our experiments).

For example, if we are monitoring the number of pack-
ets sent over the network across n hosts, the data is grouped
into an n dimensional vector and the algorithm is applied to
project this vector into a k dimensional space (k � n). The
projections are the hidden variables (or the overall correla-
tions). And, the number of hidden variables are automati-
cally determined based on the reconstruction error. Given
the desirable energy threshold (e.g., 5%), the algorithm will



(a) original (b) hidden variables (c) reconstruction

Figure 1: Web interface screenshots

pick the smallest number of hidden variables that satisfies
the threshold.
Anomaly detection: We consider anomalies to be sudden
changes of system behavior, that are indicated by a change
in the number of hidden variables. More specifically, if
the number of dimensions in this space changes, it signifies
an abnormality. This sophisticated definition can capture
anomalies beyond traditional threshold-based schemes, be-
cause our system observes the past, summarizes it in a few
latent/hidden variables, and issues an alert when the past is
not good enough to describe the present.
Missing values: Missing values can occur in the system,
usually because SNMP uses UDP which is unreliable. In
this case, we use the reconstruction values as a substitute.
If no value is observed for an extended period of time, that
host is marked as a dead node, which is also recorded as an
abnormal event.
Asynchronous arrival: The data collection is staggered
across different hosts. However, the correlation detection
algorithm requires synchronized streams. Therefore, we
interpolate the individual streams and correlate all streams
at the beginning of each time period.

6 Discussion
This section discusses an early success with the InteMon
system as well as shows how InteMon can help with au-
tomatic configuration and management of historical data.

6.1 Case study: Environmental monitoring

An early success of the InteMon monitoring system was
to detect an anomaly in the environmental data from our
data center.

A critical part of maintaining a high-availability data
center is properly controlling the data center’s environment
(e.g., the temperature and humidity of the air). Many com-
puter room air conditioning systems (CRACs) support re-
mote monitoring of their operating status, and ours are no
exception. The InteMon system monitors several param-
eters from the two CRACs in our data center. The moni-
tored parameters are:
Return temperature: the temperature of the air as it re-
turns to the CRAC to be cooled,
Supply temperature: the temperature of the air that is dis-
charged from the CRAC into the room,

Figure 2: Temperature monitoring data

Remote temperature and humidity: the average temper-
ature and humidity of the air across two remote sensors.
These sensors are used by the CRACs to control the tem-
perature and humidity in the data center.

The goal is to maintain the data center environmen-
tals within the specifications for “class 1” environments as
specified by ASHRAE [21, p10]. This specification pro-
vides a natural set of thresholds for conventional monitor-
ing systems (e.g., temperature between 68 and 77 degrees
Fahrenheit and 40% to 55% relative humidity). However, it
is possible that the room needs attention even though both
the temperature and humidity are within bounds.

Having a system that is able to detect anomalous fluctu-
ations in the sensor data can alert the system administrator
to trouble before the availability of the data center is im-
pacted. One such incident was flagged by InteMon. The
data in Figure 2 shows the measured sensor values. While
the data was still within range, InteMon flagged the high-
lighted regions as anomalous. The altered pattern of data
was caused by a problem with the supply air into the data
center. The makeup air that was being introduced into the
data center (to meet building occupancy requirements) was
of such high humidity that the CRACs were over-cooling
the air during dehumidification, triggering their internal re-
heat cycle. While this did not interfere with the functioning
of the data center, it signalled a need to address the quality
of the air entering the data center.

Although this condition could be detected by directly
monitoring the makeup air or the status of the CRACs’
reheat mode with a traditional threshold-based monitoring



system, the need to do so (and the proper thresholds) were
not obvious a priori. Instead, InteMon was able to detect
the problem, reflected in other (monitored) sensor data and
alert the administrator. Failure to detect and correct this
problem leads to excessive power consumption within the
data center and a potentially worsening of the problem until
the environment can no longer be adequately controlled.

6.2 Historical data and space savings

When storing historical data, InteMon only stores the
hidden variables and a small number of weight vectors
(projection matrices) depending on the number of alerts.
Compared to the raw data, it achieves a 10 to 1 savings
when monitoring three machines with ten streams each.
This savings is expected to be much larger when the num-
ber of streams is increased.

When it is necessary to access the historical data, it is
reconstructed using the hidden variables and the projection
matrix. The accuracy for that reconstruction is a config-
urable parameter, namely the energy threshold. In particu-
lar, to achieve the 10 to 1 savings, the threshold was 90%,
meaning that the target is 90% accuracy during reconstruc-
tion.

7 Conclusion
We developed InteMon, an intelligent monitoring sys-
tem targeting large data centers. InteMon operates on a
real production cluster consisting of over 100 machines and
about 250 TB of storage at Carnegie Mellon. The design
goal for InteMon is to address three monitoring chal-
lenges: configuration, reasoning, and storage of historical
data. InteMon uses efficient, state of the art algorithms
to learn redundancies and correlations in the input streams
of measurements.

For configuration, it learns what has been happening in
the past, and it can flag deviations from the usual behavior.
The human administrator does not need to figure out and
specify what constitutes “normal” behavior.

For reasoning, InteMon reports not only what it con-
siders anomalous, but also the “weight” matrix of PCA,
which pinpoints the streams that caused the deviation.

For access to historical data, InteMon provides a
natural way to compress historical data adaptively. When
many input streams are correlated, InteMon stores only
one copy of them, and it records the scaling factors that
are needed to reconstruct the rest. Moreover, it pinpoints
the timestamps of the anomalies. Thus, when compress-
ing historical data, InteMon can adaptively compress the
“normal” intervals, while spending more emphasis and disk
space on anomalies.

In addition to its technical strengths, InteMon has
been carefully designed with an intuitive graphical web
front-end and an interface to a relational database manage-
ment system (MySQL) for data storage.

This is a joint effort to bridge the data mining and the
operating systems community; we believe that such collab-

oration is crucial to our efforts to build self-monitoring, and
eventually self-organizing, data centers.

References
[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,

S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new
model and architecture for data stream management. The VLDB
Journal, 12(2):120–139, 2003.

[2] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Char-
acterizing memory requirements for queries over continuous data
streams. In PODS, 2002.

[3] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain : Operator
scheduling for memory minimization in data stream systems. In
SIGMOD, pages 253–264, 2003.

[4] Big Brother. http://www.bb4.org.

[5] R. Buyya. PARMON: a portable and scalable monitoring system for
clusters. Software - Practice and Experience, 30(7):723–739, 2000.

[6] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Operator scheduling in a data stream manager.
In VLDB, 2003.

[7] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A simple net-
work management protocol (SNMP). RFC 1157, Network Working
Group, 1990.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M. A. Shah. Telegraphcq: Continuous dataflow pro-
cessing for an uncertain world. In CIDR, 2003.

[9] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigas-
cope: a stream database for network applications. In SIGMOD,
2003.

[10] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. In SIGMOD, pages 40–51, 2003.

[11] A. Deshpande, C. Guestrin, S. Madden, and W. Hong. Exploit-
ing correlated attributes in acqusitional query processing. In ICDE,
2005.

[12] K. Fukunaga. Introduction to Statistical Pattern Recognition. Aca-
demic Press, 2nd edition, 1990.

[13] HP OpenView. http://www.managementsoftware.hp.com/index.html.

[14] IBM Tivoli. http://www.ibm.com/software/tivoli/.

[15] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query pro-
cessing, resource management, and approximation in a data stream
management system. In CIDR, 2003.

[16] Nagios. http://www.nagios.org.

[17] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern dis-
covery in multiple time-series. In VLDB, pages 697–708, 2005.

[18] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler. Wide
area cluster monitoring with ganglia. In CLUSTER, 2003.

[19] M. J. Sottile and R. Minnich. Supermon: A high-speed cluster mon-
itoring system. In CLUSTER, pages 39–46, 2002.

[20] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stone-
braker. Load shedding in a data stream manager. In VLDB, 2003.

[21] TC9.9 Mission Critical Facilities. Thermal Guidelines for Data Pro-
cessing Environments. ASHRAE, 2004.


